
M. SAKATA, M. J. COOPER, K. D. ROUSE AND B. T. M. WILLIS 341 

spread parameter). Of the two distributions, Gaussian 
and Lorentzian, which can be used for describing the 
mosaic spread in the Becker-Coppens theory, the 
Gaussian distribution gives slightly lower R factors and 
is therefore to be preferred. The isotropic temperature 
factor of the O atom refines at 0.55 + 0.02 A 2 when 
the temperature factor of the U atom is kept fixed 
at the value, 0.28 A 2, derived from powder data. 
The magnitude of the temperature factor is the same 
whatever version of the extinction theory is used. The 
most general form of the Becker-Coppens theory 
includes both primary and secondary extinction, but 
this form is not particularly useful because of the very 
high correlation between the temperature factor B o 
and the extinction parameter g. 

The results of this analysis are consistent with the 
conclusion of Cooper & Rouse (1976) tha t  the 
extinction theories do not account adequately for the 
wavelength dependence of the extinction. However, the 
extinction in the UO 2 crystal was not sufficiently large 
for the additional variation with wavelength to be 
significant in this case. 

These results confirm that the values derived for the 
temperature factors in this type of material are 
dependent on the correction for extinction, but are 
insensitive to the exact model which is used for this. 
In type I crystals, for which the extinction is determined 
by the mosaic spread of the sample, the Cooper-Rouse 
and Becker-Coppens theories both provide an 
adequate model for the extinction properties, even for 
effects approaching a 60 % reduction in intensity. We 
may therefore conclude that, in general, if extinction 

effects are significant reliable values of the temperature 
factors will not be obtained unless an extinction 
correction is applied, but that the choice of model is 
not important for type I crystals. However, analysis of 
data collected at different wavelengths may conceal 
inadequacies in the wavelength dependence of the 
models, unless the various sets of data are analysed 
separately. 
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An expression for the Fourier transform of two-centre Gaussian orbital products is obtained which is identical in form 
with expressions for overlap integrals. The one-centre transform is a special case, and is obtained in a trivial way from 
the two-centre expression. Explicit expressions of the transform for all combinations up tuff products are given. 

Introduction 

Recently, the calculation of X-ray structure factors from 
molecular wave-functions has attracted considerable 
interest (Bentley & Stewart, 1974, 1975; Groenewegen & 

Feil, 1969; McWeeny, 1953; Stevens, Rys & Coppens, 
1977; Stewart, 1969). In the framework of molecular- 
orbital theory this caleulation requires the evaluation of the 
Fourier transforms of atomic-orbital products; 

X~(S,R) = fZ* Y,~ exp(iS, r) dr. (1) 
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Here, X,, Z e are atomic-orbital functions, and may be on the 
same or different centres, S is the Bragg vector, R is the 
internuclear vector in the two-centre case. The same integral 
arises in the application of the Hartree-Fock method to 
crystals (Harris & Monkhurst, 1969) and in electron- 
scattering calculations (Ijima, Bonham & Ando, 1963). It is 
most convenient to have the Z's as Cartesian Gaussian-type 
functions (GTF's) since most of the current molecular wave- 
functions are expressed in terms of them and since then, the 
two-centre and one-centre cases of (1) are equally easy to 
evaluate, which is not the case if Slater-type functions are 
employed. In this note we will only be concerned with 
GTF's. 

McWeeny (1953) and Groenewegen & Feil (1969) have 
obtained an analytical expression for (I) in the case of ss 
orbital products of GTF's. They pointed out that expressions 
for other products could be obtained by differentiating 
their result, but the method is cumbersome since the result 
needs to be obtained explicitly for each symmetry-unique 
orbital product. Stewart (1969) used McWeeny's (1953) 
methods to give explicit expressions for ss, sp and pp 
products. Earlier, Miller & Krauss (1967) had shown that 
the two-centre case of (1) for GTF products gives a finite 
sum of Hermite polynomial products and Stevens, Rys & 
Coppens (1977) have used this expression in their recent 
work. It is our aim to show that the integral can be 
expressed in a simpler form, and then the connection with 
methods used for calculating overlap integrals in widely 
available LCAO SCF programs can be readily seen. We 
provide explicit expressions for all combinations up to f f  
orbital products. 

Integral evaluation 

We begin with a GTF centred at A 

z(  A,%,l,m,n) = l m n NaxAYAZA exp(--aAr2), (2) 

where N A is the normalizer and r A = r -- A. 
Substituting (2)in (1)gives 

oo 

X..(S,R) = N A N  n f "~A~el' "~'B~'12vrnivm2.rA .rB --A~rnl--B:rn2 
0 

x exp(-chr  ] - %r2B + iS" r) dr. (3) 

But, 
CA l' ~'h = (X -- Ax)h (X -- B x) t2 

lt+12 

wherefj is 

fj(l,m,a,b) = 

= Z f j ( l i ,  12,--Ax,--Bx)xJ, (4) 
j=0  

i=mlnU,/) 
m 

( 1 ) ( j _  i )  al-l bm+i-j 
i=max(Od-m) 

and is tabulated by Clementi & Mehl (1971). 
After (4) is substituted into (3) the integral can be 

separated into Cartesian components involving integrations 
over each component of the following form, 

J x" exp(-px 2 + 2qxX) dx = exp g.(P,qx) (5) 
-co ~p # 

Table 1. Expressions for  g.(p,q) for  ss to f f  products, n = 0 
to 6 

n g.(p,q) 

0 1 
1 q/p 
2 1/2p + (q/p)2 
3 3q/2p2 + (q/p)3 
4 3/@2 + 3q2/p3 + (q/p)4 
5 15q/4p3 + 5q3/p4 + (q/p)5 
6 15/8p3 + 45q2/4p4 + 15q4/2pS + (q/p)6 

where 

and 

p = a A + a s, 

q = aAA + %B + (i/2)S 

(t) .'"','z , 
gn(P,qx) n! 

k 0 (n - -  2k)!k! 

where [n/2] is the largest integer less than or equal to n/2. 
gn(P,qx) is tabulated in Table 1 for n = 0 to 6. It is related 
to the Hermite polynomial of order n by the expression 

1 I-iqx~ 
g, (P,q x) (-2i¢p)" i-i.\ ,/p I" (6) 

The final form for the integral is then 

X,,(S,R) = NAN B exp - a .4A 2 -- aBB2 

ll+12 

x Z fl(l"12'--Ax'-Bx)gi(P'qx) 
i=0 

where 

ml+m2 

Z ~(mpm2'--Ay'--By)gJ(P'qY) 
j=0  

hi+n2 

x Z fk(n"n2'--Az'--B=)gk(P'qz)  (7) 
k=0 

ex (+ 
(L = exp --aia2 R2 + iS(aAA + aBB) -- ~ • 

For I RI = 0 (7) reduces to a simplified form of the one- 
centre formula given by Stewart (1969). The form of (7) is 
identical with that for overlap integrals given by Taketa, 
Huzinaga & O-ohata (1966) and used by Davis & Clementi 
(1968) in the I B M O L  programs. 

Hence, modification of the appropriate sub-routines to 
incorporate the complex S dependence of the integral is a 
convenient route to the evaluation of (1). 
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An approximation in Zachariasen's [Theory of X-Ray Diffraction in Crystals (1945). New York: John Wiley] treatment 
of X-ray diffraction from a perfect plane-parallel crystal in the Bragg case is pointed out and eliminated. The corres- 
ponding unapproximated expression for the transmitted beam is also given. It transpires that Zachariasen's approxi- 
mation leads to significant errors for 'thin' crystals (i.e. those for which the path length is less than or of the order of the 
extinction length). Some illustrations of the nature of the error are given. 

In the course of some calculations it has come to our notice 
that there is an unnecessary approximation in Zachariasen's 
(1945) equation (3.139), which, from the text, might be 
thought to give the general solution for the diffraction of 
X-rays from a perfect plane-parallel crystal in the Bragg case, 
treated within the framework of Zachariasen's explicit 
assumptions. The nature of the approximation is such that it 
only leads to significant errors for 'thin' crystals (i.e. those 
for which the path length is less than or of the order of the 
extinction length) and then, apparently only when ~,~ (or F~) 
is non-zero (for a review concerning another unnecessary 
approximation introduced by Zachariasen, see Fingerland, 
1971). 

As Zachariasen's book is widely used as a source for 
results of X-ray dynamical theory and also because, to our 
knowledge, the general solution for the Bragg case has not 
been given in the same convenient form elsewhere, it seems 
worthwhile to present the unapproximated expression for the 
diffracted-beam intensity. In addition, we also give the 
corresponding unapproximated result for the transmitted 
beam, which is not given by Zachariasen. 

Following Zachariasen's notation, we find on substituting 
for x~, x 2, c~ and c 2 in his equation (3.137) that the diffracted 
intensity is given without approximation by 

I H b2lgtttlE[sinEav + sinh2aw] 
- -  = (1) 
Io e D ' 

where the denominator 

D = Iq + zEI -t- {Iq + z2[ q- Izl 2} sinh2 aw 

- {Iq + z21-  Izl 2} sin 2 av + Re(-z* u)sinh(2aw) 

+ Im(z* u) sin(2av), (2) 
while 

u =- v + iw =- (q + z2) uz (3) 

and an asterisk denotes the complex conjugate. 

Expression (1) may be shown to agree with that given by 
Zachariasen but for the question of the signs in the fourth 
and fifth terms in the denominator D. More specifically, 
Zachariasen effectively takes the moduli of these terms. 
Following some careful analysis, we find that, at least for 
the centrosymmetric case, Zachariasen's choice of sign for 
the fourth term is correct, but that his corresponding treat- 
ment of the fifth term in (2) is not valid if 

~,~ F~ 
x = = - -  4= 0, (4) 

~,,~ V,~ 
when the fifth term may become negative. The fifth term in 
(2) only makes a significant contribution for path lengths 
which are less than or of the order of the extinction length 
(i.e. A < zc). 

The transmitted beam intensity is similarly found from 
Zachariasen's equation (3.138) to be 

I ° Iq + z21 exp{--2aflIm(z)} 
Io e D , (5) 

where the asymmetry parameter fl is given by 

b + l  
f l -  with--1 < fl < 1. (7) 

b - 1  
and D is again given by (2). 

In order to illustrate the nature of the error introduced by 
Zachariasen's approximation, we have taken the eentro- 
symmetric case and plotted out diffracted- and transmitted- 
beam rocking curves for various values of the parameters A, 
g, fl and ~¢. Two illustrative examples are presented in Figs. 
1 and 2. 

In calculating the reflectivity R = P,/Po,  we have used the 
standard approximation that P J P o  -- I J Ib l Io ,  which is 
valid for beam widths which are large compared to the depth 
of penetration in the crystal. For the transmissivity T we 
have correspondingly taken T = I°e/I e. The 'Zachariasen 


